Skip to main content
  1. All Posts/

mocker-data-generator

Tools TypeScript

mocker-data-generator







A simplified way to generate massive mock data based on a schema, using the awesome fake/random data generators like (FakerJs, ChanceJs, CasualJs and RandExpJs), all in one tool to generate your fake data for testing.
Now the library has been migrated 100% to typescript typing are included.
You can test online here: https://danibram.github.io/mocker-data-generator/

Getting started

Install the module with:
npm install mocker-data-generator
Import it

var mocker = require('mocker-data-generator').default // (vanilla way)

// or

import mocker from 'mocker-data-generator' // (ES6 or Typescript way)

Then use it:

var user = {
    firstName: {
        faker: 'name.firstName'
    },
    lastName: {
        faker: 'name.lastName'
    },
    country: {
        faker: 'address.country'
    },
    createdAt: {
        faker: 'date.past'
    },
    username: {
        function: function() {
            return (
                this.object.lastName.substring(0, 5) +
                this.object.firstName.substring(0, 3) +
                Math.floor(Math.random() * 10)
            )
        }
    }
}
var group = {
    description: {
        faker: 'lorem.paragraph'
    },
    users: [
        {
            function: function() {
                return this.faker.random.arrayElement(this.db.user).username
            },
            length: 10,
            fixedLength: false
        }
    ]
}
var conditionalField = {
    type: {
        values: ['HOUSE', 'CAR', 'MOTORBIKE']
    },
    'object.type=="HOUSE",location': {
        faker: 'address.city'
    },
    'object.type=="CAR"||object.type=="MOTORBIKE",speed': {
        faker: 'random.number'
    }
}

// Using traditional callback Style

mocker()
    .schema('user', user, 2)
    .schema('group', group, 2)
    .schema('conditionalField', conditionalField, 2)
    .build(function(error, data) {
        if (error) {
            throw error
        }
        console.log(util.inspect(data, { depth: 10 }))
        
        // This returns an object
        // {
        //      user:[array of users],
        //      group: [array of groups],
        //      conditionalField: [array of conditionalFields]
        // }
    })

// Using promises

mocker()
    .schema('user', user, 2)
    .schema('group', group, 2)
    .schema('conditionalField', conditionalField, 2)
    .build()
    .then(
        data => {
            console.log(util.inspect(data, { depth: 10 }))
            // This returns an object
            // {
            //      user:[array of users],
            //      group: [array of groups],
            //      conditionalField: [array of conditionalFields]
            // }
        },
        err => console.error(err)
    )

// Synchronously

// This returns an object
// {
//      user:[array of users],
//      group: [array of groups],
//      conditionalField: [array of conditionalFields]
// }
var data = mocker()
    .schema('user', user, 2)
    .schema('group', group, 2)
    .schema('conditionalField', conditionalField, 2)
    .buildSync()

console.log(util.inspect(data, { depth: 10 }))

NOTE:
For the demo above you will also need to import util i.e.
var util = require('util') or import util from 'util'

Documentation

Data generation goes with model based composed by generators, the generators can have access to the data generated and to the entity generated. Generators run synchronously, take care of the related entities!!

Methods

  • schema(name, schema, generationType): Add a new schema, you must specify this params:

    • name (String): Name of the schema.
    • schema (JSON): The schema you define
    • generationType (integer or JSON): In this field you specify how you will generate this schema. 3 ways:
      • Integer to specify how many objects of this schema you want.
      • JSON with this object {max: '<maximunValues>'} you can also optionally pass min {max: '<maximunValues>', min: '<minimumValues>', this will generate a range of objects of this schema, between (0 and max) or (min and max) randomly.
      • JSON with this object {uniqueField: '<yourUniqueField>'} this means that this field () is an array and you want to generate entities with this unique values
  • reset(): Clean the internal DB.
  • restart(): Clean the internal DB and all the schemas inside.
  • build(callback): This methods start to produce the data and wrap it to the callback function, the callback funtion have 2 parameters, error and data generated.
  • buildSync(): Synchronous version of build(callback). Returns generated data or throws an error.

Schema definition

Every schema should contains the specified fields. Key can be 2 types:

  • Normal string key: indicates the key.
  • Commaseparated string key: indicates that there is a conditional, before the comma you must specify a conditional (you have all level fields generated in this moment), then you must specify the field if the conditional is true see the example.

Inside every value you can put:

  • static: For fixed fields

    {
        static: 'hello im fixed field'
    }
  • self: get himself object, and evaluate the string, so you can get calculated fields.

    • eval (Optional): Also now you can pass, eval to true, to use like like in versions < 2.6.0
    <pre>{
    self: 'id'
    

    } //will get the id of the generated entity

    { self: ‘id’, eval: true } // will get the first user id

  • db: get the db, and evaluate the string, so you can access to this entities.

    • eval (Optional): Also now you can pass, fast to true, eval to true, to use like like in versions < 2.6.0
    <pre>{
    db: 'user[0].id'
    

    } // will get the first user id

    { db: ‘user[0].id’, eval: true } // will get the first user id

  • eval: evaluate the current string, remember that i inject all the awesome methods, faker, chance, casual, randexp, and also the db and object methods. With this eval field, you must pass an exactly JSON syntax:

    {
        eval: 'object.id'
    }
    

    // OR

    { eval: ‘db.user[0]’ }

    // OR

    { eval: ‘faker.lorem.words()’ }

  • hasOne: You can pass 2 parameters:

    • hasOne: the name of the related entity, get one random.
    • get (Optional): String that will be evaluated over the random related entity.
    • eval (Optional): Only affects if get is passed, the get param only support dotted paths, with eval=true you can use an eval string, this impacts on the performance

          {
              hasOne: 'user' 
          }   // this populate the field with one random user
      
      // OR:
      
      {
          hasOne: 'user',
          get: 'id' 
      }   // this populate the field with one id of a random user
      
      
      // OR:
      
      {
          hasOne: 'user',
          get: 'id',
          eval: true 
      }   // this populate the field with one id of a random user with eval string</pre>
        </li>
      </ul>
      
    • hasMany: You can pass 4 parameters:

      • hasMany: the name of the related entity, get one random.
      • amount (Optional): Fixed number of related entities to get.
      • min (Optional): Minimum entities to get, buy default is 1, if you want the chance to have empty arrays please specify min to 0.
      • max (Optional): Maximum entities to get.
      • get (Optional): String that will be evaluated over the random related entity.
      • eval (Optional): Get will only support dotted paths, with eval= true you can get from an evaluable string
      • unique (Optional): hasMany will get unique values from the entity (Make sure that you have many unique data in the source)

            // In this case we will get 1 user (hasMany)
            {
                hasMany: 'user'
            }   // this populate the field with one random user
        
        // OR:
        
        
        {
            hasMany: 'user',
            amount: 1, //optional
        }   // In this case we will get 1 (amount) user (hasMany)
        
        // OR:
        
        {
            hasMany: 'user',
            max: 3 // optional
        }   // In this case we will get as max 3 (max) users (hasMany)
        
        // OR:
        
        
        {
            hasMany: 'user',
            min: 1 //optional
            max: 3 //optional
        }   // In this case we will get bettween min 1 (min) and max 3 (max) users (hasMany)
        
        // OR:
        
        {
            hasMany: 'user',
            get: 'id'
        }   // In this case we will get the id (get) from 1 random user (hasMany)</pre>
          </li>
        </ul>
        
      • incrementalId: For incremental numeric ids, pass the start number to increment. If you put incrementalId = true it takes from 0 the ids.

        {
            incrementalId: 0
        }
      • function: No params are passed, only context (this), in this you have {db, object, faker, chance}, and you can use faker or chance functions, object (the specified model), db (actual data generated)

              { function: function(){
        
              // this.db
              // this.object
              // this.faker
              // this.chance
              // this.casual
        
              return yourValue
          } }
        
          // OR:
        
          { function(){
        
              // this.db
              // this.object
              // this.faker
              // this.chance
              // this.casual
        
              return yourValue
          } }</pre>
        
      • faker: you can use directly faker functions like: (note that, db (actual entities generated), object (actual entity generated) are injected), you must pass an exactly JSON syntax, now also the multilang is supported by the property locale (Thanks @sleicht for the inspiration. By default I take English locale. This are the locales supported: https://github.com/marak/Faker.js/#localization).

        • eval (Optional): You can use like in versions < 2.6.0, su with this true, it will turn faker field string into an evaluable string, also loosing speed
        <pre>      { faker: 'lorem.words' }                              // Run faker.lorem.words()
          { faker: 'lorem.words()' }                            // Run faker.lorem.words()
          { faker: 'lorem.words(1)' }                           // Run faker.lorem.words(1)
          { faker: 'integer({"min": 1, "max": 10})' }           // Run faker.lorem.words(1) and take the first
          { faker: 'random.arrayElement(db.users)' }            // Run faker.arrayElement over a generated user entity
          { faker: 'random.arrayElement(db.users)["userId"]' }  // Run faker.arrayElement over a generated user entity and take the userId...</pre>